484 research outputs found

    Beings in their own right? Exploring Children and young people's sibling and twin relationships in the Minority World

    Get PDF
    This paper examines the contributions that the sociological study of sibship and twinship in the Minority World can make to childhood studies. It argues that, in providing one forum within which to explore children and young people's social relationships, we can add to our understanding of children and young people's interdependence and develop a more nuanced understanding of agency. As emergent subjects, children, young people and adults are in a process of ‘becoming’. However, this does not mean that they can ‘become’ anything they choose to. The notion of negotiated interdependence (Punch 2002) is useful in helping us to grasp the contingent nature of children and young people's agency

    Public College Enrollment in Minnesota's Changing Population Pattern 1970-85.

    Get PDF
    Statewide trends from 1970 to 1985 in the number of high school graduates, college age population, and enrollment in colleges or vocational schools are examined along with the geographical variations across the state. These data are used to project enrollment figures for public colleges in 1975, 1980, and 1985

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde

    Quantum Hall Effect in a Holographic Model

    Full text link
    We consider a holographic description of a system of strongly coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the quantitative analysis. The qualitative results and conclusions are unchanged, with one exception: we show that the quantum Hall state embeddings, which exist for discrete values of the filling fraction, deform continuously into metallic state embeddings away from these filling fraction

    RG flow of transport quantities

    Full text link
    The RG flow equation of various transport quantities are studied in arbitrary spacetime dimensions, in the fixed as well as fluctuating background geometry both for the Maxwellian and DBI type of actions. The regularity condition on the flow equation of the conductivity at the horizon for the DBI action reproduces naturally the leading order result of {\it Hartnoll et al.}, [{\it JHEP}, {\bf 04}, 120 (2010)]. Motivated by the result of {\it van der Marel et al.}, [{\it science}, {\bf 425}, 271 (2003], we studied, analytically, the conductivity versus frequency plane by dividing it into three distinct parts: ωT\omega T and ω>>T\omega >> T. In order to compare, we choose 3+1 dimensional bulk spacetime for the computation of the conductivity. In the ω<T\omega <T range, the conductivity does not show up the Drude like form in any spacetime dimensions. In the ω>T\omega > T range and staying away from the horizon, for the DBI action with unit dynamical exponent, non-zero magnetic field and charge density, the conductivity goes as ω−2/3\omega^{-2/3}, whereas the phase of the conductivity, goes as, ArcTan(Imσxx/Reσxx)=π/6ArcTan(Im\sigma^{xx}/Re\sigma^{xx})=\pi/6 and ArcTan(Imσxy/Reσxy)=−π/3ArcTan(Im\sigma^{xy}/Re\sigma^{xy})=-\pi/3. There exists a universal quantity at the horizon that is the phase angle of conductivity, which either vanishes or an integral multiple of π\pi. Furthermore, we calculate the temperature dependence to the thermoelectric and the thermal conductivity at the horizon. The charge diffusion constant for the DBI action is studied.Comment: 1+68 pages, 12 figures and 4 appendices; V2: The charge diffusion constant is calculated for arbitrary spacetime dimensions and related references added; v3: Connection with the RG flow of 1010.4036 is made; v4: Several corrections, typos fixed and a ref. adde

    Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas

    Get PDF
    We study the AC optical and hall conductivities of Dp/Dq-branes intersections in the probe approximation and use sum-rules to study various associated transport coefficients. We determine that the presence of massive fundamental matter, as compared to massless fundamental matter described holographically by a theory with no dimensional defects, reduces the plasma frequency. We further show that this is not the case when the brane intersections include defects. We discuss in detail how to implement correctly the regularization of retarded Green's functions so that the dispersion relations are satisfied and the low energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio

    Love, rights and solidarity: studying children's participation using Honneth's theory of recognition

    Get PDF
    Recent attempts to theorize children’s participation have drawn on a wide range of ideas, concepts and models from political and social theory. The aim of this article is to explore the specific usefulness of Honneth’s theory of a ‘struggle for recognition’ in thinking about this area of practice. The article identifies what is distinctive about Honneth’s theory of recognition, and how it differs from other theories of recognition. It then considers the relevance of Honneth’s conceptual framework to the social position of children, including those who may be involved in a variety of ‘participatory’ activities. It looks at how useful Honneth’s ideas are in direct engagement with young people’s praxis, drawing on ethnographic research with members of a children and young people’s forum. The article concludes by reflecting on the implications of this theoretical approach and the further questions which it opens up for theories of participation and of adult–child relations more generally

    Improved Holographic QCD

    Full text link
    We provide a review to holographic models based on Einstein-dilaton gravity with a potential in 5 dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark-Gluon Plasma.Comment: LatEX, 65 pages, 28 figures, 9 Tables. Based on lectures given at several Schools. To appear in the proceedinds of the 5th Aegean School (Milos, Greece

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    Thermodynamics of AdS5 black holes: holographic QCD and StĂŒckelberg model

    Get PDF
    Part of this work is based on Ref. [15], co-authored with Manuel Valle. I would like to thank him for collaboration and enlightening discussions. This research has been supported by Spanish MINEICO and European FEDER funds (Grant No. FIS2017-85053-C2-1-P), Plan Nacional de Altas Energas Spanish MINECO (Grant No. FPA2015-64041-C2-1-P), Junta de Andaluca (Grant No. FQM-225), Basque Government (Grant No. IT979-16), and ConsejerĂ­a de Conocimiento, Investigacion y Universidad of the Junta de AndalucĂ­a and European Regional Development Fund (ERDF) (Grant No. SOMM17/6105/UGR), as well as by Spanish MINECO Ramon y Cajal Program (Grant No. RYC-2016-20678), and by Universidad del Pas Vasco UPV/EHU, Bilbao, Spain, through a Visiting Professor appointment.We explore the thermodynamics of AdS(5) black holes in two models: i) an improved holographic QCD model with a simple dilaton potential, and ii) the Stuckelberg model in 5D. In the former case, by applying techniques of singular perturbation theory, we obtain a resummation of the naive expansion at high temperatures, providing a good fit to the lattice data for the trace anomaly. In the latter, we find a solution of the equations of motion by considering an expansion in the conformal dimension of the current associated to the gauge field.Spanish MINECO FIS2017-85053-C2-1-PEuropean Union (EU) FIS2017-85053-C2-1-PPlan Nacional de Altas Energas Spanish MINECO FPA2015-64041-C2-1-PJunta de Andalucia FQM-225Basque Government IT979-16ConsejerĂ­a de Conocimiento, Investigacion y Universidad of the Junta de AndalucĂ­a SOMM17/6105/UGREuropean Union (EU) SOMM17/6105/UGRSpanish MINECO Ramon y Cajal Program RYC-2016-20678Universidad del Pas Vasco UPV/EHU, Bilbao, Spai
    • 

    corecore